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ABSTRACT

Using configural polysampling** to identify

high-performance estimates proceeds in two phases:

¢ estimating the best compromise to make

at each configuration polysampled,

® choosing a generally-defined estimate
whose performance comes close to that of

this estimated optimum.

In the first step, shadow pricing of the criteria

for the different situations involved is helpful.

If the criteria are the relative excess vari-
ances for the situations in question, minimizing
their maximum corresponds to maximizing polyeffi-
ciency. 1In this case, as in most others, finding

the shadow prices is likely to require iteration.

In the second step, whether we use a regres-
sion or selection-by-sectors approach, or combine

both, the same shadow prices are useful.

This report sketches some of the approaches

to the two steps that seem natural.

*%*See Technical Report No. 185 by Pregibon and
Tukey for the ideas of configural polysampling.
See Technical Report No. 191 by Bell and Pregibon

for an implementation.
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l. Introduction to A and B

One of the purposes of configural polysampling is to
identify -- on the configurations sampled, at least -- esti-
nates of high polyperformance, and, as well, to assess the
extreme possibilities of specific kinds of polyperformzance.
Often these polyperformances are functions of the various
sampl ing variances, functions of such a character that the

family of Sayeb estimates -- of estimates minimizing

. {variance at Q) - (constant)]
(constant*) J

2 [(shadow price for (Q)

for some set of shadow prices -- includes, by necessity, the

estimecte with highest polyperformance.

Below, we first discuss, in some generality, the
evaluation of Sayeb estimates in termsof shadow prices and
then, second, a plausible approach to iterative selection of
the shadow prices in the special case where polyefficiency
is the polyperformance to be maximized. 1In this case, of

course, we can equally well treet the largest relative

e —————

excess variance Accentian Tap
NRSIERRET

- (variance at Q) - (@minimum variance at Q) RTIC T3 0
0 minimum variance at Q U nnnounceq 0
Justification _ |
- e (]
as a polyperformance to be minimized, By__

_Distributiony

We shall work with configurations specified as Availabilgre ¢

Avall a:
Prepared In part in connection with research at Princd®ist 8
ton University, sponsored by the U. S. Army Research ]
Office (Durhem), and in part in connection with ]
research at Bell Telephone Laboratories. _ﬁ‘
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Cy¢CoreeesCry where ca=0, cb=1 and

yi=r+cis

where y, <y, < ---< y, 2are the order statistics of a sam-
ple, and a and b are likely to be chosen close to n/4 andé
3n/4. (Note that r and s are coordinates locating a partic-
ular sample in the configuration; they do not have their

most customary statistical meanings.)

A

The Sayeb minimizers

2. The case of two situations.

We start with only two situations, A and Z, and any one

configuration., 1If t locates the estimate relative to the

configuration, as when T=r+ts, the conditional mean square error

of the estimate, for
/this configuration, is a quadratic function of t. We lose

nothing if we modify the scale of t so that t = 0 is the
optimum value of t in situation A and t = 1 is optimum for

situction 2.

If TfA and sz were the original optimum values, any
velue of t would correspond (where r and s locate 2 sample

in the confiquration f) to

March 16, 1981
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f
Var(r+(TfA + t(T

=T.,))s)
r,s fz “fA

D . 2 22
= (minimized A var1ance)f + t (sz TfA) Sen
and thus to a contribution to the weiglhted sum of excess
variances at situation 2 equal to

— 2
reSealTezTea) )

£2 (1
where HAf is the weight on configuration f appropriate
for situation A. (In dealing with operators like "ver"
which may involve @ restricted range, we specify the renge
2bove the operator, reserving the space below the operator
for binary veriables. Thus the "f" above the "var"labove

indicates a conditional variance over the configuration f.)
(The "weights"™ used are discussed in Technical Report #185.)

If we are concerned with polyefficiency, we are con-
cerned with the excess-variance as a fraction of the minimunm
variance (minimum when A alone is considered) which we cell
the "minimum A-variance". Thus our concern, at f under A,

about t differing from zero is the shadow price times

' 2
2| YagSeaTeaTen) | 0 2
minimum A-variance Af

while that at £ under Z is

March 16, 1981
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2
(1-t) minimum Z-variance

_ N2
= azf(l t)

If the shadow prices are d and §, we then wish to '

b o ot

minimize {

2 2
d i a,ete + ¢ i a,c(1-ty)

T

Differentiation w.r.t. tf leads to

dapet, = §a, (1-t.) =0

and thence to

et

and hence to a total price that is the sum over f of

(da, ) (§a, )
dops + §oz¢

More interesting, usually, will be the individual

excess veriances

March 16, 1981




If we introduce

da
Af
t »
£ azf
and
8(r) = = = sech?(In 1)

which = 1 if r = 1, about 1/3 for r = 0.1, or 10, and about

1/25 for r = ,01 or 100, these the excess variances become

March 16, 1981
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2
2 apety = (1/4)(§/d) £ a,.B(r)

Af

2
2 a,e(1-t)" = (174)(4/8) % apeBlre)

which will be less than, but perhaps of the order of

li 2 a,¢

4dq

and
d
I5 2 Af
What if there are more than two situations?

3. Three situations.

Suppose now that we consider an additional situation,

B, one where the relative excess variance is estimated by

2
£

where t = b (not necessarily between 0 and 1) is the optim-
izing value of t for situation B alone. With shadow prices

d,p and § we are to minimize

2 2 2
2 (dapet® + Page(t-b)“ + §a, (t-1)7)

We can simplify this by using

March 16, 1981
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(t-c) 2

(1-c)t? + c(1-t)2 - ¢(l-c)

an identity easily checked. Changing notation, we have
pa_.(t-b)2 = Ba_ (1-b)t? + Ba_.b(t-1)2 - Ba_.b(1-b)
Bf = Pagg Pop¢ Papg
and what we are to minimize becomes

| 2 2 |
2 | (dape-Pap (1-D))t" + (§a, +paycb) (t-1)° - 3 pay b(1-b),

where the final term is independent of t,

By analogy with the last section, we see that

&aAf + pbag,

t =
£ daye + Bage + §a,¢

and we may as well calculate the three excess variances as

2
BA = 2 anets

=3 a -b) 2

B Be(te

Ez =3 azf(tf—l)

respectively.

4. Four or more situations.

The formulas for four situations follow in an entirely
similar way. From them the general relations lead to the

Sayeb minimizations (BA'BB'BC""'BZ) given by
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EA = 3 aAftf
2
EB s an(tf-b)

m
[ ]

2
c = 2 agg(tg=c)

z=

where
. Pbage + Yeaoe + ... + §a .
£ daye * Pagg * Yagg * ... ¥ §3
£
A suggestel iteration
5. Worst-case minimization.

We now suppose that our desire is to minimize
maX{EA,EB,EC,..-,EZ}

and that we have triecd d(O),p(O),...,&(O) with results

EB(O), EB(O) PR 82(0), whose maximum is Emax(O).

If EA(O) is less than Em x(0), we are doing wastefully

a
well at A, so that we want to reduce the corresponding

March 16, 1981

T

s




§

s Com e ot aadd dimd AT 3t TRl o Lol mudtae b & Sa 4o ainde

relative shadow price, d, and let EA increase in the hore
that Emax decreases. Similarly if EB(O) is less than
Bmax(O), we would like B to sink relatively. And so on.

Let us propose one algorithm that moves things in the right

direction.

For some exponent p -- we try p = 1 (or, perhaps,
P = 0) for awhile, and then learn to choose p more reason-

ably -- and some convenient k, we can take

| E,(0) IP

A
d(l) = klg——==I d(0)
IEmax(o)I

P
Eg(0)

| |
(1) = kl=———7—==1 B(0)
&3 IEmax(o)I

| €,(0) IP
Z
§(1) = klz———=~1 §(0)
IBmax(o)l
(It might be nice to choose k so that

d(1)+B(1)+...+§(1)=1000 ~- or some other handy number.)

Looking at a few successive values of
{(«(i),B(1),..,§(i))} might now suggest, for instance, try-
ing certain of these shadow prices as zero. If, while using

them as zero, the corresponding E ever becomes Emax' we

March 16, 1981
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should make them finite (>0) again.

This may not be the most rapidly convergent algorithm,
but we can hope for relatively good performance, once we

tune p.

&

External description of estimates

6. Introduction to C.

We have discussed how, in simple instances we can esti-
mate internal descriptions of "best"” estimates, finding out
-- for a sample of configurations -- good estimates of what
the value of the "best®™ estimate is for that configuration.
(The failure of our "estimates"™ to be perfect comes from our

slight imprecision in finding the right shadow prices.)

We now want to estimate an external description of the
"best"” estimate. This means that we need to find a func-
tion, defined for all configurations that comes close to our
estimate values for each of our sample configurations.

Several approaches are possible including:

1) Selecting a set of explicit estimates, evaluating
each at each selected configuration, and doing a
linear regression of our "best" values on the
estimate values -- the only question is what

weights to use in the regression,

March 16, 1981




2)

3)

4)

5)

-

dividing the space of configurations up into
parts, which we will call sectors, evaluating the
performance of each of the explicit estimates for
each sector (using excess variances and the optim-
izing shadow prices), and selecting the explicit

estimate that performs best in each sector,

continuing (2) by trying to interpolate sencibly
between the several explicit estimates thus

selected, one for each sector,

combining (1) and (2), which leads, after help

from experts, to a solvable linear programming

problem, and to different lincoms in different sectors

taking a relatively good explicit estimate, iden-
tifying (in terms of excess variance at optimizing
shadow prices) its unnecessary loss at each confi-
guration, isolating the large-loss.configurations,
and studying the change in estimate required at
each of them as a basis for inventing possibly

improved estimates.

We will have to learn by experience which of these seem
most effective. A little consideration will clear up cer-

tain aspects of what we might do.

7. The regression approach.

Suppose, then, that we have, for & sample of configure-

March 16, 1981
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tions f, and two situations, A and 2:

¢ The overall shadow prices  and § that minimize

the maximum relative excess variance.

¢ for eech f, the constants apgr Ag¢ and tf (the

latter on the modified f-scale where t=0 and t=1l

are the separate optima and do not correspond to

Ya and yb)
) for each of m explicit estimates the vazlues tfi
for the i-th estimate of t.
Take first m = 2. We want to consider
B (estimate 1) + (1-B) (estimzte 2)
whose t-value at f is
etfl + (1-9)tf2
The shadow-priced cost of this estimate is
S &, (0t +(1-8)t. )% + €S a,  (1-6t. -(1-8)t. )2
Af fl £2 zf f1 £2
which equals
a9? S a, . t2. + 2dP(1-8) § a,.t.. + (1-8)% 5 o, t2
Af £l Af"fl Af"f2

+ 607 5 a, (1-t )2 + 2€9(1-9) Sz, (1-t ) (1-t

2) £2)

March 16, 1981
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H + §(1-8)° 3 a,e(l-t,,)

18 2 2

| = do“[All]) + 2de(1-8)[Al2) + d(1-9)“[A22]
|

r‘ + &92[211] + 260 (1-0) [212) + §(1-8)2[222)
Ez where the six[ ]'s designate the six sums written down
1K

F; above. If we write

1

(11] = d[A11l) + §[z11)

(12) = q[A12) + §[z12)

[22] = q[A22] + §[z22)

e —

YR S T o ey T R S S PSP B T Gy b SSPmS Beoy S S er

e

where the first and last are the prices of the indivi-

dual estimates, the price of the linear combination is
82[11) + 20(1-0)[12] + (1-8)2[22]

whose © derivative is

20(11] + 2(1-20)(12)-2(1-8) [22]

which vanishes when

March 16, 1981
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o = o 122] = [12]
0 LEL] =227+ [22]

so that

L ape 11) - [12)
1 -8, 11T - 211271 + [22]

and the price of the optimum linear combination reduces

to
(1113 (22))- (12132 ([11]+(22]) - 2(12)(11)(22] + 2(12)°
divided by the square of
[11] - 2[12]) + [22)

Extending this numerically to larger m offers little
difficulty, since what we are doing is equivalent to

seeking 2 minimum “"variance"™ when

2
(zii] = 2 azs(l-tfi)

[zij) = 2 azf(l-tfi)(l-tfi)

The extension to two estimates and more than two situa-
tions proceeds in a similar way. There will be more shadow
prices and more sums, but, after pricing out, the same

number of "variances"™ and “covariances".

March 16, 1981
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8. Sector techniques.

If we were working with situations

A = Gaussian

Z = Slash

we would probably want to define sectors in terms of some

measures of apparent Gaussiantity-vs.-stretchedness, such as

2

=
L}

javaj 1ln s

2 2
K2 = 1n sbi - 1ln s

where "javaj" stands for "jackknife-estimate of variance of
the jackknifed values of", sgi is the robust estimate of
variability described, inter alia, in Chapter 11 of Mostell-
er and Tukey, and {cl,cz,...,cn}, are order statistics of

the configuration in question.

We might want to use such measures either alone or in
combination with some measures of skewness, such as
Ll = (abmean of ci's) - (mean of ci's)
L

3 " (abmean of ci's) - (median of ci's)

L3 = cn + c1

March 16, 1981
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where the abmean is the mean of the --- central order

statistics (out of n).

Having chosen sectors, we now need to estimate the per-
formance of each external estimate at the configurations in
our polysample that fall in each sector. When we need to

look, for each estimate and sector:

® for each configquration, at the contributions to
relative excess variance, say, aAftgi and
azf(l-tfi)z) (recall that the a's incorporate the

relevant weights),

® for each sector, at the pticed-oui contributions

* 2 . 2 .2
AT aetey +§ T app(1-tyy)

where the sums are over all configurations in the

sector from our polysample.

If we are selecting estimates, we need now only select
for each sector the estimate whose sector price is least.
(We may be able to make good use of a listing of excesses of
these estimated sector prices over the similar estimate for

our optimum as defined by the tfi‘)

To go a useful step further, we might 1list the esti-
mates in order of increasing sector prices for that sector,

and then try, in each sector, all 50-50 combinations of the
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best 10 (otmbest 6) estimates so far tried for that sector.
Sufficient iteration here should lead to close to the op-

timum linear combination for each sector.

A regression calculation in each sector would also be

feasible,

Everything is easy, so long as we are prepared to stick
to the previously found shadow prices., We will only get
into linear programming situations etc. if we insist on us-
ing more correct shadow prices -- more correct because we
are no longer accommodating as wide a variety of possible
choices, thus shrinking the attainable choice set and tilt-
ing the tangent hyperplane at the new optimum This
corresponds to insisting on controlling, for our external

estimates, the actual
maximum relative excess variances

for the more restricted situation, instead of controlling

that particular
lincom relative excess variances

whose unrestricted optimum over our sampled configurations
enforces an optimum for the maximum. Those who wish to

modify may do so.

9. Use of judgment, intuition, insight and inventiveness

Approaches (3) and (5) above call for human input. We

will have to learn how to do this by trying.
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